Nonlinear control of an underwater vehicle/manipulator with composite dynamics

نویسندگان

  • Carlos Canudas de Wit
  • Ernesto Olguín Díaz
  • Michel Perrier
چکیده

This paper is devoted to the problem of control design of an underwater vehicle/manipulator (UVM) system composed of a free navigating platform equipped with a robot manipulator. This composite system is driven by actuators and sensors having substantially different bandwidth characteristics due to their nature. Such difference allows for a mathematical setup which can be naturally treated by standard singular perturbation theory. On the basis of this analysis, two control laws are proposed. The first is a simplification of the computed torque control law which only requires partial compensation for the slow-subsystem (vehicle dynamics). Feedback compensation is only needed to overcome the coupling effects from the arm to the basis. The second aims at replacing this partial compensation by a robust nonlinear control that does not depend on the model parameters. The closed-loop performance of this controller is close to that of the model-based compensation. Both control laws are shown to be closed-loop stable in the sense of the perturbation theory. A comparative study between a linear partial derivative (PD) controller, a partial model-based compensation, and the nonlinear robust feedback is presented at the end of this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Robust Tracking Control of an Underwater Vehicle-Manipulator System

This paper develops an improved robust multi-surface sliding mode controller for a complicated five degrees of freedom Underwater Vehicle-Manipulator System with floating base. The proposed method combines the robust controller with some corrective terms to decrease the tracking error in transient and steady state. This approach improves the performance of the nonlinear dynamic control scheme a...

متن کامل

Design of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective

In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...

متن کامل

Coordinated Vehicle/manipulator Design and Control Issues for Underwater Telemanipulation

1: Deep Submergence Laboratory, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA ABSTRACT Control of underwater vehicle/ manipulator systems described by highly nonlinear and coupled dynamics can be improved through careful vehicle and manipulator design, while novel controller structures can improve system performance and simplify the man/machine interface requirements. Understa...

متن کامل

Dynamic Analysis and Active Damping Control for Underwater Vehicle-Manipulator Systems

Underwater vehicle-manipulator (UVM) systems have been suggested for inspection, maintenance, repair and construction of underwater structures. The addition of manipulators to the vehicle makes control of the system more difficult due to the interaction forces between vehicle and manipulator. So, the efficient compensation of those interactions should be considered for accurate control of both ...

متن کامل

Hybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term

This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Contr. Sys. Techn.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2000